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is small. The next order in the linear dispersion relation
(fifth derivative) is then as important as the thirdWe numerically calculate bions, which are bound states of two

solitary waves which travel together as a single coherent structure derivative. It is then necessary to replace the KdV
with a fixed peak-to-peak separation, for the fifth-order Korteweg– equation by its generalization; rescaling the variables
deVries equation. R. H. J. Grimshaw and B. A. Malomed (J. Phys. gives the canonical form (1.1). There is one crucial
A 26 (1993), 4087–4091) predicted such bions using perturbation

distinction which cannot be scaled away, which is thetheory. We find that the nearly singular quasi-translational eigen-
relative sign of the third and fifth derivative terms. Whenmode which is the heart of the theory is also numerically important

in the sense that later iterations are approximately proportional to the signs are opposite, the solitary waves decay to zero
this eigenmode. However, the near-singularity does not create any as uxu ⇒ 0. When the signs are the same, as here, the
serious problems for our Fourier pseudospectral/Newton– solitary waves are ‘‘weakly nonlocal’’ in the sense that
Kantorovich/pseudoarclength continuation algorithms. This type of

the soliton is a fusion of a single large peak which travels,theory for weakly overlapping solitary waves has been previously
locked in phase, with a small amplitude oscillation whichdeveloped by Gorshkov, Ostrovskii, Papko, and others. However,

Grimshaw and Malomed’s work and our own are the first on bions fills all of space. ‘‘Nonlocal’’ means that the solitary
which are ‘‘weakly nonlocal,’’ that is, decay for large uxu to small wave has nonzero amplitude even infinitely far from the
amplitude oscillations rather than to zero. Our numerical calcula- large amplitude ‘‘core’’ of the soliton; ‘‘weakly’’ means
tions confirm the main assertions of Grimshaw and Malomed. How-

that the amplitude of these ‘‘far field oscillations’’ orever, there are other features, such as a complicated branch struc-
oscillatory ‘‘wings’’ is exponentially small in 1/«, whereture with multiple turning points and the existence of bions with
the parameter « measures the amplitude of the corenarrow peak-to-peak separation, which are not predicted by the

theory. Q 1996 Academic Press, Inc. [6–9].
Grimshaw and Malomed used the perturbation methods

developed by Gorshkov and Ostrovskii [2, 3] and others.
1. INTRODUCTION Bound state solitons per se are not a novelty [4, 5], but the

work of Grimshaw and Malomed [1] seems to be the first
Grimshaw and Malomed [1] predicted bound states of to treat a fusion of so-called ‘‘weakly nonlocal’’ solitary

solitary waves for the fifth–order Korteweg–deVries waves.
(FKdV) equation In this work, we have extended the Grimshaw–Malomed

study through numerical computations. Our physical goal
ut 1 uux 1 uxxx 1 uxxxxx 5 0, (1.1) is to demonstrate that the predicted bound states actually

exist and verify that peak-to-peak distances are quantized,
where the subscripts denote differentiation with respect i.e., restricted to a discrete set of values for a given ampli-
to the indicated coordinate. In most of the many physi- tude. Our numerical goal is to understand how the pertur-
cal and engineering problems where the ordinary KdV bation theory is reflected in the algorithms, particularly by
equation is a model for waves which are both weakly the near-singularity and quantization conditions which are
nonlinear and weakly dispersive, its fifth order generaliza- central in the Grimshaw–Malomed analysis.
tion (1.1) is also applicable, specifically in those param- Figure 1 illustrates four different ‘‘bions’’ of the same
eter regimes where the coefficient of the third derivative amplitude. Each bion is a bound state of two ordinary,

one-humped solitary waves. The large peaks are the soli-
tons—more precisely, the ‘‘cores’’ of the solitons. The* Email: jpboyd@engin.umich.edu. World-Wide Web Homepage:

http://www-personal.engin.umich.edu:/pjpboyd/. small oscillations are the ‘‘wings’’ or ‘‘far field oscillations’’
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FIG. 1. FKdV nonlocal bions for « 5 Af, which is equivalent to a phase speed c 5 0.3125. The four modes with the smallest separation between
the two big peaks are shown. The maxima are at x 5 6s, where (a) s 5 6.07, (b) s 5 8.41, (c) s 5 9.69, and (d) s 5 11.17.

and extend indefinitely both to the left and the right on interactions. The solitons’ self-interaction is strong and un-
approximated. However, if the solitary waves remain wellthe infinite spatial interval.
separated during a collision or in a bound state, the overlapThe FKdV equation also has steadily translating nonlin-
between the two solitary waves will be small. Since theear solutions on the periodic interval which we shall call
solitons decay exponentially fast with distance from their‘‘bicnoidal waves.’’ For them, the patterns shown in Fig.
maxima, the overlap is exponentially small in the separa-1 are simply repeated on each spatial period. When the
tion S between the two solitary waves. The GOP theoryperiod is large in comparison to the width of the cores,
is very general and predicts collision-induced phase shiftsthe periodic solutions are extremely good approximations
and other time-dependent features. However, we shall onlyto the infinite interval solution (except near the edges of
discuss the simpler case in which the peaks of the twothe spatial period).
solitary waves are fixed at X 5 6s, where S ; 2s is the
total peak-to-peak separation of the two solitons.2. PERTURBATION THEORY FOR TWO WEAKLY

The first step is to assume that the bion is steadilyOVERLAPPING SOLITARY WAVES
translating at a phase speed c. In a reference frame travel-

Gorshkov, Ostrovskii, and Papko (GOP) [2, 10–13] and ling with the wave, the partial differential equation (1)
becomes the ordinary differential equationothers [3–5] have developed a theory for soliton–soliton
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uXXXXX 1 uXXX 1 (u 2 c)uX 5 0, (2.1) (2.8)Roverlap ; U1U2,X 1 U2U1,X

which has been simplified by exploiting the fact that U1where
and U2 are individual solutions to (2.1).

The quantization condition—bions exist only for discreteX ; x 2 ct. (2.2)
values of the separation parameter s—arises because the
Newton–Kantorovich equation is insoluble for arbitrary s.The next step is to assume that the exact solution is
The reason is that the solutions to (2.1) are translationallythe superposition of an approximate solution U(X) and a
invariant; that is, if u(X) is a solution to (2.1), then so also iscorrection D(X), where D is assumed to be small:

(2.9)v(X) ; u(X 1 p),(2.3)u 5 U(X) 1 D(X).

where p is an arbitrary constant. This in turn implies thatSubstituting this decomposition into (2.1) and neglecting
the functionterms of O(D2) gives the ‘‘Newton–Kantorovich’’ equation

for (2.1),
(2.10)eA(X) ; uX

(2.4)JD 5 2R
must be a homogeneous solution of the Newton–
Kantorovich equation, that is, an eigenfunction of the Ja-which is the linearization of the original problem with
cobian operator with an eigenvalue of zero. The proof isrespect to U(X), where J is the linear operator
to Taylor expand (2.9) for p ! 1, substitute into (2.4),
simplify using the fact that R(u) 5 0, and then take the
limit p ⇒ 0. One finds that u(X 1 p) solves (2.1) in theJ ; ­5

­X 5 1
­3

­X 3 1 hU(X) 2 cj ­

­X
1 UX (2.5)

limit of infinitesimal translation p if and only if JuX 5 0.
The existence of a homogeneous solution to the New-

and R(U) is the ‘‘residual function’’ ton–Kantorovich equation creates the Fredholm alterna-
tive: Either Roverlap satisfies a constraint so that it does not

(2.6)R(U) ; UXXXXX 1 UXXX 1 (U(X) 2 c)UX project onto the eigenfunction, or the linearized differen-
tial equation has no bounded solution. This condition re-

which is obtained by substituting U(X) into the original stricts the soliton-to-soliton separation 2s to discrete
differential equation (2.1); R(U) 5 0 if U is an exact so- values.
lution. There are two subtleties. The first is that if we integrated

By repeatedly solving the Newton–Kantorovich equa- (2.1) with respect to X to obtain the equivalent fourth-
tion and updating U(X) via U ⇒ U 1 D at each iteration, order form solved in [15], then the Jacobian operator would
we obtain the differential equation version of Newton’s be self-adjoint and the constraint would be the obvious
iteration. When the differential equation is discretized, J condition that R(U) must be orthogonal to the homoge-
becomes the Jacobian matrix J of the discretization of neous solution uX . However, the linearization of the fifth-
(2.1), and (2.4) becomes the usual Newton (also called order equation (2.1) is not self-adjoint, and the constraint
‘‘Newton–Ralphson’’) iteration for solving a system of is orthogonality with respect to the homogeneous solution
nonlinear algebraic equations. We computed the numerical of the adjoint operator J*.
solutions throughout the paper by the Newton–Ralphson Define the inner product ka, bl to be the integral of the
iteration after applying a pseudospectral Fourier discreti- product of a(X) with b(X) for any two functions a, b,
zation. where the integral is from 2y to y for bions and over

The analytic perturbation theory of Grimshaw and Ma- the spatial period when analyzing bicnoidal waves. The
lomed and of Gorshkov, Ostrovskii, and Papko also em- adjoint is then defined by the condition that ka, Jbl 5 kJ*
ploys the Newton–Kantorovich equation. In the perturba- a, bl for arbitrary functions a, b. By integrating by parts
tion theory, U(X) is defined to be the superposition of two and comparing the result to (2.1), one can show that u(X)
exact single soliton solutions, itself is the eigenfunction of J*; that is,

(2.7)U(X) ; U1(X) 1 U2(X), (2.11)J*u 5 0.

The constraint then takes the formwhere U1(X) is the soliton whose peak is at X 5 2s and
U2(X) is that with its maximum at X 5 s. R(U) is then the
‘‘overlap’’ residual (2.12)ku, Roverlapl 5 0.
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The second subtlety is that Grimshaw–Malomed theory a function only of «2, there is a minimum peak-to-peak
separation for a given « (or equivalently, a given phasedoes not actually linearize the FKdV equation with respect

to an exact solution u(X), but rather with respect to the speed c or core amplitude) which rapidly increases as «
decreases. To put it another way, it is only when the solitonssuperposition of two solitons, U(X). However, it is consis-

tent with the neglect of terms of O(D2) to approximate are sufficiently far apart to have decayed to the oscillations
displayed in (2.15) at X 5 0 that these oscillations can makeU(X) in J by U1 alone near X 5 2s and by U2 alone near

X 5 s. With this approximation, we are linearizing with the orthogonality constraint be obeyed. This prediction of
a rapidly increasing minimum s is verified, too.respect to an exact solution U1(X) near X 5 2s, and

therefore the approximate Jacobian Nevertheless, many interesting questions remain. In the
next four sections, we ask: How are these eigenfunctions
of J and its adjoint reflected in the numerical analysis?

J̃ ; ­5

­X 5 1
­3

­X 3 1 hU1(X) 2 cj ­

­X
1 U1,X (2.13)

3. NEARLY SINGULAR EIGENMODES IN
NEWTON’S ITERATIONhas U1 as an exact eigenfunction of its adjoint. The

Fredholm constraint (or nonsecularity condition, as it is
The heart of the Grimshaw–Malomed theory is that theoften called in perturbation theory) is then

Jacobian operator is singular. This would seem to imply
that a numerical computation of bions via Newton’s itera-

kU1 , Roverlapl 5 E U1(X)hU1(X)U2(X)jX dX 5 0. (2.14) tion would explode in overflow errors and stern warnings:
Matrix is singular!

In reality, the numerical difficulties are not that bad—Since the overlap is largest at X 5 0, one may approximate
and yet the translational eigenfunction does play a crucialthe solitons in (2.14) by their asymptotic forms as uXu ⇒ y
and dominant role in Newton’s method. The first savingwith an error which is exponentially small in the separation
grace is that, although a rigorous argument is still lacking,parameter s; if this error is not small, the perturbation is
a couple of pieces of evidence suggest that FKdV solitonsno good anyway.
and bions must be symmetric about some point which weIf the solitons decay monotonically like those of the
will choose, without loss of generality, to be X 5 0.ordinary Korteweg–deVries equation, which asymptote to

Symmetry with respect to X 5 0 means that u(X) 5U1(X) p exp(22«uX 1 su) for some constant «, then it is
u(2X) for all X. Grimshaw and Joshi [14] have provedeasy to see that the integrand in (2.14) is one-signed and
that nonlocal, steadily translating structures must be sym-can never vanish. Thus, bound states of solitons are not
metric for large uXu. However, their argument does notpossible for the KdV equation or for any species of solitons
exclude the possibility of an unsymmetric core. Boyd [15]which decay monotonically for large uXu.
tried to numerically compute asymmetric solitary waves,The weakly nonlocal solitons of the FKdV equation (2.1)
but failed even when the spectral basis was constrained todo in fact decay monotonically, but not to zero, but rather
be unsymmetric. We exploit this symmetry by employingto the oscillation
a spectral basis which uses only symmetric functions—a
cosine series to compute bicnoidal waves, for example.U1(X) p a(«) sin(kf («)[X 1 s] 1 F), uX 1 su @ 1,

The exact translational eigenfunction, eA(X) ; uX , is(2.15)
antisymmetric, however, because differentiation is a parity-
reversing operation. (This is obvious if one recalls thatwhere «, the pseudowavenumber, is a parameter related
the derivative of a Fourier cosine series is a sine series.)to the phase speed c by the exact solution c 5 4«2 1 16«4.
Therefore, a symmetric basis automatically excludes theIt is the overlap of these oscillatory wings that permits
homogeneous solution of the Newton–Kantorovich equa-the constraint (2.14) to be satisfied—but only for discrete
tion; therefore the Jacobian matrix, which is just the dis-values of the separation parameter s.
cretization of the operator J in (2.4), is nonsingular. Hur-The oscillations of the solitons in the ‘‘far field’’ where
rah! In fact, the translational eigenfunction is not even auXu @ 1 also creates some additional formal difficulties
minor problem for computing ordinary solitary waves.which are raised, but not completely resolved, in Grimshaw

Unfortunately, the Jacobian matrix for computing bionsand Malomed [1]. Nevertheless, we shall show that the
and bicnoidal waves is almost singular. One can show thatprediction of bions, that is, solitary waves with two large
the functionmaxima instead of just one, are confirmed by our numerical

results, as is the quantization condition.
(3.1)ẽS(X) ; U1,X 2 U2,XGrimshaw and Malomed further predict that, since the

amplitude of the oscillations a is an exponentially decreas-
ing function of 1/«, whereas the amplitude of the cores is is an approximate, symmetric eigenfunction of the Jacobian
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by the following arguments. First, it is easy to prove that sponse is controlled by the projection of the residual vector
R onto that column of U (or row of UT) associated with thethis is symmetric with respect to X 5 0 by replacing X by

2X and applying the antisymmetry of U1,X and U2,X with singular mode. If we order the modes so that the smallest
singular value is associated with Nth columns of V and U,respect to the center of solitons one and two, respectively.

Second, note that in the vicinity of soliton one, we can then the numerical analogue of the Grimshaw–Malomed
constraint is that (UT)N ? R 5 0, where the dot denotes theneglect U2,X in (3.1) and the terms in U2 in the Jacobian

operator because these will be exponentially small if the usual inner product of two vectors and the first vector is
the Nth row of the transpose of U. The shape and structuretwo peaks are well separated. With these approximations,

however, J̃ ẽS P 0 1 O(exp(24« s)), where the error term of U are absorbed into the inner product, so the shape of
the amplified response is that of VN , the Nth column of V.is the magnitude of the second soliton in the vicinity of

the first. Thus, besides an exact eigenfunction which is Figure 3 illustrates the Nth columns of U and V. It is
not in the least surprising that the resonant column of Uantisymmetric with respect to X 5 0, the Jacobian operator

also has an approximate eigenfunction which is symmetric strongly resembles u(X) while the resonant column of V
resembles UX , which are also shown for comparison. (Moreand closely resembles ẽS(X).

Figure 2 illustrates the eigenfunction of smallest eigen- precisely, VN resembles the approximation ẽS(X) defined
by (3.1).) The main difference, evident also in the graphsvalue for the Jacobian matrix which is the pseudospectral

discretization of the FKdV equation (2.1) using a basis of of the Jacobian eigenmode in Fig. 2, is that VN lacks the
far field oscillations which are evident in uX . We offer noFourier cosines. Also shown is the corresponding eigen-

function of JT, the transpose of the Jacobian, which is the explanation for this.
discretization of the adjoint operator J*. (The pseudospec-
tral method is explained in the Appendix.) Exactly as pre- 4. ITERATION HISTORY
dicted from the work of Grimshaw and Malomed, the
eigenfunction of J closely resembles uX as made even Figure 4 illustrates the first four corrections D(X) as

computed by the Newton–Kantorovich iteration. All laterclearer in Fig. 2b while the eigenfunction of J* has the
structure of u(X) itself. corrections closely resemble D(4). These in turn resemble

uX and therefore the translational eigenfunction of theTable I shows the corresponding eigenvalues. The sec-
ond eigenvalue is less than double that of the first; graphs Jacobian operator and the Nth column of the V matrix in

the SVD factorization of the Jacobian matrix. For thisshow that it (and the eigenfunction of the transpose) are
very similar to those for the lowest mode. For larger «, reason, uX is also graphed for comparison.

The main difference between the derivative of the bionthese two modes merge to form a complex conjugate pair
with complex eigenvalues! Nevertheless, as we shall see and the late corrections is that the former has noticeable

oscillations for large uX 2 su, whereas the oscillations infrom the iteration history illustrated in the next section
(where « is large enough so that the lowest Jacobian eigen- D(X) rapidly diminish to almost nothing with the iteration

number. An oscillation-free (or nearly free) far field isvalues are complex), the later iterations are still dominated
by corrections that closely resemble uX . characteristic of the SVD mode, too; there is little doubt

that the later iterations are dominated by the nearly singu-We can escape the murky confusion of complex eigenval-
ues by using the singular value decomposition (SVD) of lar mode of the Jacobian.

It follows that in later iterations, Newton’s method isthe Jacobian matrix instead. The solution to the matrix
equation Jd 5 2R, where d is the column vector of the mostly translating the peaks of the solitary waves (so as to

change the separation 2s) without altering their shapes.coefficients of D(X), can be written as
(Recall that the singular eigenmode of the Jacobian arises
from the translational invariance of the FKdV equation.)(3.2)d 5 2VW21UTR,
Because the nearly singular eigenmode or SVD mode is
symmetric in X, the two cores move in towards the originwhere V and U are orthogonal square matrices and W is

a diagonal matrix whose elements are the ‘‘singular values’’ or away from X 5 0 simultaneously.
For the first iteration or two, however, the quasi-transla-of J, that is, the eigenvalues of JJT. The singular values

and the columns of V and U are always real-valued even tional mode does not dominate. If the first guess is the
KdV soliton or the higher order « power series given below,when the matrix J 5 UWVT has complex eigenvalues.

We see from the second half of Table I that one of the the first iteration must dress the monotonically decaying
core with far field oscillations as evident in Fig. 4a. Onlymodes of the SVD has a singular value more than a thou-

sand times smaller than those of the other modes. Because in the ‘‘end game,’’ where the solution is very close to its
final, converged result does the quasi-translational eigen-the inverse of W appears in (3.2), it follows that modes

with tiny singular values will be strongly amplified in the mode dominate the corrections.
Furthermore, the existence of the nearly singular modesolution of the linear equation. The amplitude of the re-
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FIG. 2. The gravest eigenfunctions of the Jacobian matrix J (pseudospectral representation of the operator J in the Newton–Kantorovich
equation) and its transpose for 80 collocation points, « 5 a;A and a spatial period of 200. The Jacobian is computed after the iteration has converged
to the bion, u(X). Because the eigenfunctions are symmetric with respect to X 5 0, only the right half of the periodicity interval is illustrated. (a)
Solid: gravest eigenfunction of the Jacobian matrix. Dashed: corresponding eigenfunction of the transpose of the Jacobian matrix. (The latter is
also said to be a ‘‘left eigenfunction’’ of the Jacobian.) (b) A comparison of the eigenfunction of the Jacobian (solid) with uX (dashed). (c) A
comparison of the eigenfunction of JT (solid) with u(X) (dashed).

does not necessarily imply that the Newton iteration will 24.2. What is remarkable is that after 15 iterations, all
computations for which s0 . 19.5 have reduced the residu-fail or even converge slowly. Although the first guess for

Fig. 4 was a KdV soliton with s0 5 21 (versus s 5 21.54 als at the collocation points to machine roundoff level,
O(10215).for the converged solution), the maximum pointwise resid-

ual for the first six iterations was (0.053, 0.0021, 0.0012, Of course, there is a little white lie in this. The graph
was computed using discrete steps in s0 , as indicated by1.1 3 1025, 2.5 3 1029, and 5.3 3 10214), where the last is

limited by roundoff error. the circles on the bottom curve. Because there are multiple
solutions, there must be certain values of s0 for which theFigure 5 illustrates the Ly norm of the corrections as a

function of the initial location s0 of the soliton on the right iteration is equally attracted to two different solutions and
so converges to neither. Figure 5 shows, however, thathalf of the interval. The three downward spikes on the

dot-dash curve, which connects the maximum pointwise these intermodal zones of nonconvergence are very small.
The nearly singular mode of the Jacobian matrix and thevalues of the 7th iterate, D(7), point towards the values of

s for three solutions which have peaks at 21.54, 22.38, and tiny singular value of the SVD factorization of the Jacobian
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TABLE I how fix up or modify Newton’s method? The short answer
is: Underrelaxation helps, but there is a complex-valuedEigenvalues and Singular Values of the Jacobian Matrix for 80
solution which attracts most bad first guesses, i.e., thoseCollocation Points, a Period of 200, and « 5 a;A
that start with the peaks too close together. To understand

Mode no. Eigenvalue Ratio when underrelaxation succeeds or fails, we must first di-
gress to describe complex-valued solutions, which play a

1 1.42 —
crucial role in the iteration.2 22.68 1.9

3 74.4 52.4
4 2158.1 111.3

5. COMPLEX-VALUED BIONS
Mode no. Singular value Ratio

The FKdV equation also has complex-valued solutions.
1 0.0098 —

One is shown in Fig. 6, which has peaks at 619.11.2 10.3 1051.
To compute complex bions, it sufficed to multiply the3 17.2 1755.

usual Newton’s correction by the factor (1 1 iG), where4 30.0 3061

we chose G 5 s;A;. From s0 5 19, Newton’s method gener-
Note. The ratios of these for the higher modes are compared to that ated Fig. 6 in only 10 iterations. There are other complex-

for the gravest mode.
valued solutions for a given «; for example, for « 5 Ak, there
is a bion rather similar to Fig. 6, except that the peaks are
at X 5 616.26 and the imaginary part is roughly twice
as large. (One also needs to use a larger value of G tomatrix do not make the underrelaxed Newton’s iteration

erratic or unreliable. Rather, the singular quasi-transla- compute it.)
However, the complex-valued bion of the widest core-tional eigenmode is important only because it quantizes

the solutions that the Newton iteration will converge to. to-core separation for a given « has a special significance
and will be dubbed the ‘‘principal complex bion.’’ ThisThe singular mode is also important because it deter-

mines a minimum allowed value of s for a given «; for mode is important for two reasons. First, this mode has a
special role in attracting—and wrecking—Newton’s itera-« 5 Ak, for example, there are no solutions with the soliton

cores closer to the origin than 21.54. A first guess with the tion when the first guess is the sum of two solitary waves
which are too narrowly separated for a given «, as explainedsoliton peaks at 619.5 or smaller will go nowhere fast as

indicated by the few circles in the upper left of Fig. 5. in the next section.
Second, the principal complex mode has the smallestThis raises an immediate question: Is it possible to some-

FIG. 3. Structure of SVD modes for the same case as in Fig. 2: 80 collocation points, spatial period of 200, and « 5 a;A . (a) Comparison of the
Nth column of the U matrix (solid) with u(X) (dashed). The maximum pointwise difference is only 0.0019. The near-resonant mode will be strongly
excited unless the residual vector is orthogonal to (UN)T. (b) Comparison of VN (solid) with uX (dashed). The maximum difference is 0.07 and is
due almost entirely to that of far field oscillations in the SVD mode. When the Newton’s correction D is dominated by the (nearly) singular mode
of the Jacobian, it will have the shape of VN .
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FIG. 4. The first four Newton–Kantorovich iterations for the numerical solution of the FKdV equation for « 5 Ak, 60 collocation points and a
first guess of u0(X) 5 12«2 hsech2(«[X 2 21]) 1 sech2(«[X 1 21])j. Solid: the correction D(X). Dashed: 6uX/const, where the sign and scaling
constant are chosen to produce the closest possible agreement with the correction D(X).

imaginary part of the complex-valued solutions. This has larger « is about 9.5% taller than the real part of the complex
solution, but this is almost exactly the 9.8% increase pre-two implications. One is that the real part of this mode is

almost a steadily translating solution of the FKdV equa- dicted from the approximation of each peak by lowest order
perturbation theory, which is proportional to «2.tion. One would expect that if this were used as an initial

condition for the time-dependent equation (1.1), this solu- In Section 8, we shall examine the structure of turning
points and multiple (real) bions in more detail.tion would evolve with time rather slowly except for

steady propagation.
Third, this almost-bion turns into a true, real-valued bion 6. UNDERRELAXATION AND THE PRINCIPAL

for larger «. Figure 7 shows the ratio of the maximum of COMPLEX MODE
the absolute value of the imaginary part of u(X) to the
real part for a range of «. At « P 0.1299, the continuation of Both theory and empirical experience show that the

domain of convergence of Newton’s method can be greatlythe complex-valued mode in Fig. 6 merges with its complex
conjugate to generate a pair of real-valued solutions. expanded by underrelaxation; that is, the correction is set

equal to the Newton correction multiplied by a constantFigure 8 compares one of these real-valued continuations
with the real part of the complex mode of Fig. 6. The bion at d # 1:
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FIG. 5. The Ly norm of the corrections D for various first guesses FIG. 7. Ratio of the maximum of the absolute value of the imaginary
and iteration numbers. The first guess u0(X) was two solitary waves with part of u divided by that for the real part versus «, same bion branch as
peaks at X 5 6s0 where s0 is the horizontal axis of the graphs and Fig. 6.
the solitary waves were approximated in u0 by third-order perturbation
theory, that is, by terms up to and including O(«8): Solid, first correction;
dashed, second iteration; dotted, third Newton correction; dash-dot, fifth
iteration; solid-with-circles, 15th iteration. The computations, which speci- evaluated r(u(i) 1 d (k)

i ) for d (k)
i 5 (As)k, k 5 1, 2, ..., kmaxfied s0 at evenly spaced intervals with a spacing of ahA , converged (if they

and then we chose whichever d (k)
i minimized the Ly normconverged!) to one of three bicnoidal waves with the peaks at s 5 621.54,

of the residual, i.e., the largest absolute value of the biggest22.38, and 24.20, respectively. The calculations used 60 collocation points
with a spatial period of 200 and « 5 Ak. element in the vector of the residual at the N colloca-

tion points.
In the ‘‘end game’’ close to a root, di 5 1, so that this

scheme retains the quadratic convergence of the unmodi-D(i)(X) 5 diD
(i)
Newton . (6.1)

fied Newton’s algorithm. With a poor first guess, underre-
laxation during the ‘‘opening game’’ can often retrieveA line search is the usual strategy to determine d. That is
convergence, where d 5 1 would lead to divergence or ato say, di is chosen to minimize the norm of the residual.
limit cycle.We employed a simple inverse powers-of-2 search which

The theoretical justification for underrelaxation is the

FIG. 6. The real and imaginary parts of the complex-valued solution
for « 5 Ak with 80 collocation points, spatial period 5 200. The maxima
of the real part (solid) are at X 5 619.11. The maximum value of the FIG. 8. Solid, u(X; « 5 0.131); dashed, real part of u(X, « 5 Ak);

dotted, difference.real part exceeds that of Im(u) (dashed) by a factor of 11.5.
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concept of the ‘‘Newton flow,’’ which is the solution of the
system of N ordinary differential equations in the pseu-
dotime variable T,

du
dT

5 2J21R, (6.2)

where J is the Jacobian matrix and R is the column vector
of residuals, which are both functions of the column vector
u. The standard Newton’s iteration, u(i11) 5 u(i) 2 J21R(u(i))
is equivalent to solving the Newton flow equation by the
Euler forward method with a unit time step. The underre-
laxed Newton method is equivalent to applying Euler’s
scheme with a pseudotime step d. The crucial point is that
the residual is a monotonically decreasing function for the
Newton flow; one can prove [17]

R(u(T)) 5 exp(2T)R(u(0)). (6.3)

This implies that underelaxation will always reduce the
residual at each step if the pseudotime step d is suffi-
ciently small.

Unfortunately, the ‘‘Newton flow’’ is singular wherever
the Jacobian matrix is singular. In practical terms, this
means that even with line search underrelaxation, New-
ton’s iteration can wreck on a reef, where the determinant
of the Jacobian is zero. Since det(J) is a scalar function of
N variables, it vanishes on surfaces of dimension (N 2 1)
in the N-dimensional space of unknowns.

Figure 9 is a kind of graphical autopsy of such a ship-
wreck. The condition number estimate, taken from [16], FIG. 9. History of a Newton’s iteration that converged to a point
tends to infinity as det(J) ⇒ 0. Despite the fluctuations, where the Jacobian matrix is singular: top, condition number estimate

for Jacobian matrix J, divided by 1000; middle, underrelaxation parameterthe general trends are clear: The iteration stalls out at a
d; bottom, Ly norm of the residual, multiplied by 10. « 5 Ak, s0 5 8.point in the N-dimensional space of unknowns, where

det(J) 5 0. The residual norm flattens out, the underrelax-
ation parameter d ⇒ 0, and the condition number ⇒y.

When the initial guess for the bion is two peaks separated Thus, although the numerical algorithm computes in an
N-dimensional space of the Fourier coefficients of u(X),by a large distance, the underrelaxed iteration is almost

always able to find its way home to a real-valued solution. the later iterates represent movement in a one-dimensional
subspace only. The iteration will stall out at that peak-When the initial guess is too narrow—somewhat narrower

than any of the real-valued bions for that «—then usually to-peak separation, where the residual norm has a local
minimum as a function of s, the separation parameter.the iteration fails as in Fig. 9.

In general, the iteration will stall out with d ⇒ 0 near This happens when s coincides with the separation of the
principal complex mode.an arbitrary point of the surface where det(J) 5 0. Here,

however, the situation is special. As emphasized earlier, Figure 10 shows another typical case. The residual norm
decreases slowly, then plunges abruptly when the peaks arethe iteration rapidly dresses the solitary waves with far

field oscillations so that, except for the first few iterations, at X 5 619.1—the peaks of the real part of the principal
complex bion. The norm of the difference between u(i) andthe Newton correction is approximately proportional to

the translational eigenfunction of the Jacobian matrix. This the real part of the complex mode drops steeply at the
same time. For larger iteration number i, however, thereimplies that after the first few iterations for the case in

Fig. 9, the shapes of the solitary waves and the far field are only small fluctuations about flat plateaus. The residual
can never decrease all the way to zero nor can the differ-are correct and the remaining 35 iterations displayed are

merely translating the soliton peaks to their correct mutual ence between the iterates and the real part of the complex
solution go to zero because the closest solution is not real,spacing—or trying.
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TABLE II

Separation Parameter s for Bions (« 5 Ak with a
Spatial Period of 200)

sm sm 2 sm 2 1

* 19.11 Principal complex bion
1 21.54 —
2 22.38 0.84
3 24.20 1.82
4 25.58 1.38
5 27.16 1.58
6 28.65 1.49
7 30.19 1.54
8 31.71 1.52
9 33.24 1.53

10 34.76 1.52
11 36.28 1.52
12 37.81 1.53

FIG. 10. Solid, Ly norm of the residual versus iteration number: 13 39.33 1.52
Dashed, L2 norm of the difference between u(i)(X) and the real part of 14 40.85 1.52
the principal complex mode. The first guess was two solitons as approxi- 15 42.38 1.53
mated by third order perturbation theory with peaks at 65; N 5 40, 16 43.90 1.52
« 5 Ak. 17 45.43 1.53

18 46.95 1.52
19 48.48 1.52
— 50 Ordinary cnoidal wave of period 100but complex. (We can reach this complex solution only by

allowing the underrelaxation parameter to be complex or Notes. (1) For these parameters, one-quarter of the far field wavelength
making a complex-valued first guess.) is Wf/4 5 1.524.

Figure 10 shows that the difference between u(i)(X) and (2) The core-to-core distance is equal to 2s; the peaks are at X 5 6s.
the real part of the complex solution is remarkably small:
the maximum difference is only a;A; of the maximum of
u(i)(X). As it evolves from a narrow first guess (small s0),

underrelaxation parameter. (We arbitrarily imposed d $the complex mode controls the real-valued iteration, like
a;sA f.) With that, or with coarser limits, the iteration some-an arithmetical coral reef, unseen in the hidden waters of
times jumps across the reef after several dozen iterates ofthe complex-plane, but nonetheless impaling most itera-
little change.tions that are forced to try to cross it.

Escape occurs because very close to a point, whereWe must say ‘‘most’’ because occasionally iterations are
det(J) 5 0, the Newton correction is huge—sometimesable to escape from the ‘‘reef’’ and converge to a real-
large enough to leap into the domain of attraction of avalued bion. This is impossible for the Newton flow, but
real-valued bion. If so, the line search will accept the jumpa practical Newton’s algorithm moves in discrete steps. To
and then convergence is extremely fast.permit such escapes, it is sound practice to set a minimum

Unfortunately, this only happens sometimes, and then
usually only after a very large number of iterations. The
most effective strategy, as illustrated in Fig. 5, is to try a
few iterations for many different initial soliton-to-soliton
separations, rather than to use only a few initializations,
and to apply hundreds of iterations to each.

7. QUANTIZATION OF PEAK-TO-PEAK SEPARATION

Table II lists the separation parameter s for all the dis-
crete modes that exist for a particular « and a particular

FIG. 11. Schematic of the potential created by the far field of a solitary spatial period. Throughout this article, the numerical calcu-
wave. When another soliton is placed in a valley of the spatially oscillating lations were performed by choosing a particular value of
potential, the result is a stable bion. When a soliton is placed on a potential

the phase speed c and then computing the Fourier coeffi-hill, exactly at the maximum, another steadily propagating bion is created.
cients as described above and in the Appendix. To labelHowever, this is unstable to small perturbations and the peak-to-peak

separation distance will oscillate with time. graphs, however, we use «, which specifies the width of
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the KdV solitary wave that best approximates the two Figure 12 compares two bions that differ by Wf /2 in
core-to-core distance (Fig. 12a) and by Wf (Fig. 12b). Thecores of the bion via usol(X) p 12«2 sech2(«X) 1 O(«4).

The phase speed is related to «, without approximation, small oscillations in the latter graph are out of phase (differ
by sign) both between the cores and in the far field. Theby c 5 4«2 1 16«4.

Table II confirms the quantization predicted by Grim- pair of modes which differ by only half the far field wave-
length have small oscillations which are in phase betweenshaw and Malomed [1]. That is, to say, bions exist only

when the distance 2s between the two maxima is equal to the two cores, but are of opposite signs for large uXu.
However, the table also shows that the spacing is quitea set of discrete values.

Since the far field oscillations are essential to binding the irregular for the lowest few modes, i.e., those bion modes
that have the smallest separation. The Malomed–two solitons together, the gaps between different allowed

values of s should be proportional to the wavelength of Grimshaw theory is clearly successful, but there is room
for further refinements.those oscillations, which is

8. TRACING THE BRANCHES
Wf 5

2f
kf

5
2f

Ï1 1 4«2
1 O(a2), (7.1)

By using pseudoarclength continuation [18] with the
Fourier pseudospectral method [19], we traced the bion
modes as « varied. Figure 13 shows the variation of thewhere kf is the far field wavenumber and the error is pro-
lowest Fourier coefficient for the lowest modes. The lowerportional to the square of a, the amplitude of the far field
right-hand side of each branch is one of the four solutionsoscillations. Table II shows that for large mode number m,
illustrated in Fig. 1.

As « decreases from its initial value of Af, each branch
has a turning point; for smaller «, the branches continues p const 1 mWf /4 (7.2)
only as the sort of complex-valued bions discussed above.
Remarkably, the branches also have turning points at

which implies that the peak-to-peak distance S (52s) in- larger « and then reverse backwards to smaller «.
creases by one-half of the far field wavelength from one Figure 14 is a cartoon depicting the fourth branch bions
bion mode to the next. at both turning points and at the extremes of the graph.

Malomed and Grimshaw [1] claim that the bion modes The far field oscillations are so large at the extremes that
differ by integer, rather than half-integer, multiple of Wf . the wave is not ‘‘weakly’’ nonlocal in any meaningful sense,
However, this is only a difference in convention. Figure so we have not continued the graphs beyond the range
11 is a schematic that shows that the potential energy illustrated. Still, even on that interval « [ [a;A , Af], the bion
created, in the GOP theory, by one solitary wave is oscilla- displays remarkable diversity while retaining the basic pat-
tory with X. If a second soliton is placed in a valley, any tern of two large peaks projecting up from a sea of back-
valley, of the potential energy, it will create a stable station- ground oscillations.
ary state (‘‘stationary’’ in a frame of reference moving at
the common phase speed of the two solitary waves). Plac- 9. SUMMARY
ing a soliton on a hill of the potential, exactly at the top, will
also make a stationary state. These bions will be unstable Our numerical calculations verify the important predic-
because small perturbations will trigger large oscillations tions of the perturbation theory of Grimshaw and Ma-
in core-to-core separation as the soliton rolls down the lomed, including the following:
potential hill.

(i) FKdV solitary waves form bound states.Since our numerical method solves an ordinary differen-
tial equation in the moving reference frame, it happily (ii) The distances between the peaks in the bion are
computes all stationary states, both stable and unstable. quantized, that is, limited to discrete values.
Malomed and Grimshaw [1] specified only the change in (iii) For a given amplitude, there is a bion of minimum
core-to-core distance between different stable bions (B. separation. As the amplitude decreases, this minimum sep-
Malomed, private communication.) This is indeed mWf , aration rapidly increases.
where m is an integer.

Thus, every other bion listed in Table II is unstable. However, we also found new features which are not in
the theory. The irregular gaps in separation parameter sIdentifying which modes are stable could be done by solv-

ing the time-dependent FKdV equation using the output for small mode number, the existence of bions with strongly
overlapping cores, and the turning points which mark tran-of the Newton/pseudospectral algorithm as the initial con-

dition (plus a tiny perturbation). sitions from real-valued bions to complex-valued solutions



BOUND STATES OF SOLITONS OF THE FKdV EQUATION 67

FIG. 12. Comparison of neighboring bion modes: (a) Two adjacent modes for which s differs by the minimum possible, Wf/4, where Wf is the
wavelength of the far field oscillations (« 5 Ak, spatial period 5 200): Solid, s 5 34.76; dashed, s 5 36.28. (b) Two adjacent modes for which s differs
by twice as much as in (a): solid, s 5 34.76; dashed, s 5 37.81.

as « ⇒ 0 are experimental discoveries which lay beyond made a start, but our graphs are representative rather than
comprehensive.the scope of their analysis.

One unresolved issue is to systematically trace the com- Some other intriguing questions remain, too. Why does
a given bion mode always become complex at small ampli-plicated structure of the various bion branches. We have
tudes? Why do the real-valued solutions have multiple
turning points on each branch? What is the physics behind
some of the rather strange-looking coherent structures
which appear as the branches are traced? There is much
room for future work.

APPENDIX: THE NEWTON–KANTOROVICH/FOURIER
PSEUDOSPECTRAL ALGORITHM

The Newton–Kantorovich iteration for (2.1) begins with
a first guess. We usually employed third-order perturbation
theory, that is,

u(0) 5 usol(X 2 s) 1 usol(X 1 s) (A.1)

usol(X) p 12«2 sech2(«X) 1 120«4hDs sech4(«X) 2 sech2(«X)j

1 «6h5580 sech4(«X)[sech2(«X) 2 1]

1 360 sech2(«X)j 1 «8h297972 sech8(«X)

2 397296 sech6(«X) 1 126216 sech4(«X)

2 14832 sech2(«X)j, (A.2)

except for « 5 Af, where we employed only the O(«2) ap-
proximation. To iterate, we solve the Newton–
Kantorovich differential equation

FIG. 13. The lowest Fourier coefficient a1 versus « for the four
branches of solutions whose forms for « 5 Af are illustrated in Fig. 1. The

(A.3)J(i)D(i) 5 2R(u(i21)),spatial period is 16f. The values of the separation parameter at the lower
right-hand side of each branch are as follows: (I) s 5 6.07 (solid); (II)
s 5 8.41 (dashed); (III) s 5 9.69 (dot-dash); (IV) s 5 11.17 (dotted). where R is the residual function
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FIG. 14. Solid: a1(«) for Branch IV of the previous Fig. The four inserts show u(X) for four points on the branch. Upper left: « 5 0.116573
(left end of the branch). Bottom left: « 5 0.165639, which is a turning point. Upper right: « 5 0.208756, which is the other turning point. Bottom
right: « 5 0.25 (right limit of the branch). The branch continues beyond the range in « which is illustrated, « [ [0.116, 0.25].

R(u(i)) ; u(i)
XXXXX 1 u(i)

XXX 1 (u(i)(X) 2 c)u(i)
X (A.4) iteration to the next. Exact minimization is wasteful and

unnecessary in current arithmetical folklore, so we merely
evaluated the residual for a set of discrete values of d andand J is the Jacobian operator
then chose whichever one gave the smallest norm. For
simplicity, the discrete d were chosen to be 22k, where k

J(i) ; ­5

­X 5 1
­3

­X 3 1 hu(i21)(X) 2 cj ­

­X
1 u(i21)

X , (A.5) is a nonnegative integer.
The linearized differential equation (A.3) is discretized

by expanding u(X) and D(x) as Fourier cosine series withand then we perform the update
a prespecified mean:

u(i) ; u(i21) 1 diD
(i) (A.6)

u(X) 5 umean 1 ON
j51

ajfj(X) (A.7)
until the norm of D(i) is below some tolerance.

The underrelaxation parameter is chosen by a line search
D(i)(X) 5 ON

j51
d(i)

j fj(X), (A.8)to minimize the norm of R(u(i21) 1 diD
(i)) for d [ [dmin ,

1]. The parameter dmin (5a;sA f in most of our computations)
ensures that there is always some movement from one where umean is a constant and where the basis functions are
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fj(X) 5 cos( jX/L), j 5 1, ..., N, (A.9)

where L is the spatial period P divided by 2f.
The first remark is that we approximate bions, which

technically are defined only on X [ [2y, y], by spatially
periodic solutions or bicnoidal waves. There are two rea-
sons for this. One is that bicnoidal waves are legitimate
solutions of the FKdV equation and interesting in their
own right. The second is that the difference between the
bicnoidal wave and the corresponding bion of the same
phase speed decreases exponentially fast with the period
P, provided we limit the comparison to X [ [2P/2, P/2].
This was explicitly demonstrated for solitons in [15], where
the wave equation was solved directly on the infinite inter-
val and the solitary wave was compared with the corre-
sponding cnoidal wave. The argument applies to bions
without change.

The second surprise in (A.7) is the restriction to cosines.
FIG. 15. uaju versus j for the first mode bion (bicnoidal wave) with aThis restriction builds the expected symmetry of the solu-

spatial period of 200, « 5 Ak, 80 collocation points, and maxima at X 5tions (u(X) 5 u(2X) for all X) into the basis set. Also, the
621.54. The arrows point to the resonance spike at the far field wavenum-

cosine-only basis excludes the antisymmetric-with-respect- ber, kf P 1 ⇔ j 5 32 for this spatial period, and to its second harmonic at
to-X translating eigenmode of the Jacobian operator. (The j P 64. Both the far field and the soliton cores are extremely well resolved!
nearly singular symmetric eigenmode of J, linearized with
respect to the bion, remains, alas, and causes the complica-
tions described in the main body of the paper.) while the Jacobian operator becomes the Jacobian matrix

The third surprise is that the constant in the Fourier J with elements
cosine series is always 0 for the correction and may be
specified a priori for u(X). The reason is that if u(X; c0) J(i)

jk 5 fk,XXXXX(Xj) 1 fk,XXX(Xj)
is a solution to (2.1), then it is easy to prove by direct

1 (u(i21)(Xj) 2 c)fk,X(Xj) (A.13)substitution that v(X) ; g 1 u(X; c0) is a solution for
c 5 c0 1 g, where g is an arbitrary constant. It follows that 1 u(i21)

X (Xj)fk(Xj).
the sole effect of adding a constant g to the mean value
of u(X), umean , is to shift the phase speed by g. We lose The matrix equation Jd 5 2R is solved for the column
no generality by specifying umean a priori. vector d whose elements are the spectral coefficients of

Since we want solitons to decay to the far field oscilla- D(i)(X).
tions as uXu ⇒ 0, we made the choice The spectral coefficients for u(X) exhibit the exponential

rate of decay with j which is usual for Fourier coefficients
of smooth functions [19] as illustrated in Fig. 15.(A.10)umean 5 48«/P

One final note: because the Jacobian matrix J operates
on a vector of spectral coefficients, but generates Ju aswhich is the mean value of the sum of two functions each
evaluated at the collocation points, it follows that the eigen-with the shape of 12«2 sech2(«X).
vectors of J are spectral coefficients, where those of JT areThe pseudospectral discretization, also known as ‘‘collo-
vectors of grid point values. For graphical display, thecation’’ or ‘‘orthogonal collocation,’’ is to demand that the
eigenvectors of the Jacobian matrix have been converteddifferential equation should be exactly satisfied at each of
to grid point values by summing the Fourier series at eachthe N collocation points
of the grid points and then graphically compared with uX

and similarly for the eigenmodes of the SVD factorization.
Xj 5 fjL, j 5 0, 1, ..., (N 2 1) (A.11) To follow the modes around branch points, we used

pseudoarclength continuation [18, 20].
The residual function R becomes the residual vector R
with elements ACKNOWLEDGMENTS
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